【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形. ![]()
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.
参考答案:
【答案】解:(Ⅰ)设AB中点为O,连OC,OB1 , B1C,则截面OB1C为所求, ![]()
证明:OC,OB1分别为△ABC,△ABB1的中线,所以AB⊥OC,AB⊥OB1 ,
又OC,OB1为平面OB1C内的两条相交直线,所以AB⊥平面OB1C,
(Ⅱ)以O为原点,OB方向为x轴方向建立如图所示的空间直角坐标系,
易求得B(1,0,0),A(﹣1,0,0),
,![]()
设平面BCC1B1的一个法向量为
,
由
解得平面BCC1B1的一个法向量为
,
,
所以AC1与平面BCC1B1所成角的正弦值为 ![]()
【解析】(Ⅰ)设AB中点为O,连OC,OB1 , B1C,则截面OB1C为所求,通过证明AB⊥OC,AB⊥OB1 , 推出AB⊥平面OB1C.(Ⅱ)以O为原点,OB方向为x轴方向建立如图所示的空间直角坐标系,求出平面BCC1B1的一个法向量,入会利用空间向量的数量积求解AC1与平面BCC1B1所成角的正弦值.
【考点精析】本题主要考查了直线与平面垂直的判定和空间角的异面直线所成的角的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;已知
为两异面直线,A,C与B,D分别是
上的任意两点,
所成的角为
,则
才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】
的内角
的对边分别为
,已知
.(1)求
;(2)若
,求
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是东西方向的公路北侧的边缘线,某公司准备在
上的一点
的正北方向的
处建设一仓库,设
,并在公路北侧建造边长为
的正方形无顶中转站
(其中
在
上),现从仓库
向
和中转站分别修两条道路
,已知
,且
.
(1)求
关于
的函数解析式,并求出定义域;(2)如果中转站四堵围墙造价为10万元
,两条道路造价为30万元
,问:
取何值时,该公司建设中转站围墙和两条道路总造价
最低. -
科目: 来源: 题型:
查看答案和解析>>【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;A
B
合计
认可
不认可
合计
(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式:
) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列
的前
项和
满足
,数列
的前项和
满足
且
.(1)求数列
,
的通项公式;(2)设
,求数列
的前
项和
;(3)数列
中是否存在不同的三项
,
,
,使这三项恰好构成等差数列?若存在,求出
,
,
的关系;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=ex与g(x)=ax+b的图象交于P(x1 , y1),Q(x2 , y2)两点. (Ⅰ)求函数h(x)=f(x)﹣g(x)的最小值;
(Ⅱ)且PQ的中点为M(x0 , y0),求证:f(x0)<a<y0 .
相关试题