【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有
>0,给出下列命题:
① f(3)=0;
② 直线x=-6是函数y=f(x)的图象的一条对称轴;
③ 函数y=f(x)在[-9,-6]上为单调递减函数;
④ 函数y=f(x)在[-9,9]上有4个零点.
其中正确的命题是____________.(填序号)
参考答案:
【答案】①②③④
【解析】令x=-3,得f(-3)=0,由y=f(x)是偶函数,所以f(3)=f(-3)=0,①正确;因为f(x+6)=f(x),所以y=f(x)是周期为6的函数,而偶函数图象关于y轴对称,所以直线x=-6是函数y=f(x)的图象的一条对称轴,②正确;由题意知,y=f(x)在[0,3]上为单调增函数,所以在[-3,0]上为单调减函数,故y=f(x)在[-9,-6]上为单调减函数,③正确;由f(3)=f(-3)=0,知f(-9)=f(9)=0,所以函数y=f(x)在[-9,9]上有4个零点,④正确.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;
(2) 已知函数f(x)=x2+2mx+3m+4.
① 若函数f(x)有且仅有一个零点,求实数m的值;
若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2-2(a+1)x+2alnx
(1)若a=2. 求f(x)的极值. (2)若a>0. 求f(x)的单调区间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
是直角梯形,
,又
平面
,且
,点
在棱
上,且
.
(1)求异面直线
与
所成的角的大小;(2)求证:
平面
;(3)求二面角
的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】3名志愿者在10月1号至10月5号期间参加社区服务工作.
(1)若每名志愿者在这5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志愿者恰好连续3天参加社区服务工作的概率;
(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记
表示这3名志愿者在10月1号参加社区服务工作的人数,求随机变量
的分布列. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,曲线
在点
处的切线与直线
垂直(其中
为自然对数的底数).(1)求
的解析式及单调递减区间;(2)是否存在常数
,使得对于定义域内的任意
,
恒成立,若存在,求出
的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的左、右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.(1)求椭圆的方程;
(2)若
分别是椭圆长轴的左、右端点,动点
满足
,连结
,交椭圆于点
,证明:
为定值;(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,说明理由.
相关试题