【题目】已知集合A={x| ≤( x1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求实数a的取值范围.


参考答案:

【答案】
(1)解:由题意:U=R,

集合A={x| ≤( x1≤9}={x|﹣1≤x≤2};

集合B={x|log2x<3}={x|0<x<8};

则:UB={x|0≥x或8≤x};

集合C={x|x2﹣(2a+1)x+a2+a≤0}={x|a≤x≤a+1}

∴集合A∩B={x|0<x≤2};

UB)∪A={x|x≤2或8≤x}


(2)解:由题意:A∪C=A,

∴CA,

则满足:

解得:﹣1≤a≤1

所以实数a的取值范围是[﹣1,1]


【解析】(1)确定集合A,集合B的组成范围,根据集合的基本运算即可求A∩B,(UB)∪A;(2)根据A∪C=A,建立条件关系即可求实数a的取值范围.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

关闭