【题目】设函数f(x)=
,g(x)=a(x+b)(0<a≤1,b≤0).
(1)讨论函数y=f(x)g(x)的奇偶性;
(2)当b=0时,判断函数y=
在(﹣1,1)上的单调性,并说明理由;
(3)设h(x)=|af2(x)﹣
|,若h(x)的最大值为2,求a+b的取值范围.
参考答案:
【答案】(1)见解析(2)单调递增(3)![]()
【解析】试题分析:(1)当
时,由奇函数定义可得函数为奇函数;当
时,举一个反例可得函数为非奇非偶函数(2)利用单调性定义进行证明:作差后进行分子因式分解,根据因子符号判定差的符号,最后根据单调性定义进行判断(3)绝对值内为二次函数,讨论标准为对称轴与定义区间
位置关系,根据离开对称轴的远近及图像确定函数最值,根据函数关系式求对应值域,最后求各个值域的并集
试题解析:(1)当
时,
,为奇函数;
当
时,
为非奇非偶函数
(2)任取
,则
,即为单调递增函数
(3)
当
时
当
时![]()
综上![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C).
(2)1张奖券的中奖概率.
(3)1张奖券不中特等奖,且不中一等奖的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
的图象如图所示,则
的取值范围是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
。(Ⅰ)求函数
的单调区间;(Ⅱ)若函数
在
上是减函数,求实数
的取值范围。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
是直角梯形,
,
,
,
,
是等边三角形,且侧面
底面
,
分别是
,
的中点.
(Ⅰ)求证:
平面
;(Ⅱ)求平面
与平面
所成的二面角(锐角)的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是
,乙猜对歌名的概率是
,丙猜对歌名的概率是
,甲、乙、丙猜对与否互不影响.(I)求该小组未能进入第二轮的概率;
(Ⅱ)记乙猜歌曲的次数为随机变量
,求
的分布列和数学期望.
相关试题