【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
|
|
|
|
|
|
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
附表及公式:
| 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
![]()
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出
列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
参考答案:
【答案】
(1)
解:男生的平均分为:
![]()
女生的平均分为:
![]()
从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.
(2)
解:由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得
列联表如下:
优分 | 非优分 | 合计 | |
男生 | 15 | 45 | 60 |
女生 | 15 | 25 | 40 |
合计 | 30 | 70 | 100 |
可得
,
因为
,所以没有90%以上的把握认为“数学成绩与性别有关”.
【解析】本题主要考查了独立性检验的应用,解决问题的关键是(1)根据分层比
,男生抽取60人,女生抽取40人,利用频数分布表计算平均值,用每一段的中点计算加权平均数,(2)根据频数分布表填写
列联表,根据
的计算公式,和
比较大小,小说明没有
把握认为有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xoy中,直线l的参数方程为
(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=4cosθ.(1)写出直线l的普通方程和圆C的直角坐标方程.
(2)若点P坐标为(1,1),圆C与直线l交于A,B两点,求|PA|+|PB|的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
其中
为样本容量。P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(1)根据以上数据建立一个
的列联表;
(2)试判断是否有95%的把握认为是否晕机与性别有关? -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以 下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
,
,
,
,
分别加以统计,得到如图所示的频率分布直方图.

附表:P(
)0.100
0 .010
0.001
k
2.706
6.635
10.828
,(其中
)
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成
的列联表,并判断是否有
的把握认为“生产能手与工人所在的年龄组有关”? -
科目: 来源: 题型:
查看答案和解析>>【题目】为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,测试成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.

(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
是奇函数,且f(2)=﹣ 
(1)求函数f(x)的解析式
(2)判断函数f(x)在(0,1)上的单调性,并加以证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】(Ⅰ)设f(x)=
,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定义域为R,求实数m的取值范围.
相关试题