【题目】如图,在直角坐标系中,直线
与
轴分别交于点
、点
,直线
交
于点
,
是直线
上一动点,且在点
的上方,设点
.
![]()
(1)当四边形
的面积为38时,求点
的坐标,此时在
轴上有一点
,在
轴上找一点
,使得
最大,求出
的最大值以及此时点
坐标;
(2)在第(1)问条件下,直线
左右平移,平移的距离为
. 平移后直线上点
,点
的对应点分别为点
、点
,当
为等腰三角形时,直接写出
的值.
参考答案:
【答案】(1)点D的坐标为(﹣2,10), 点M的坐标为(0,
)时,|ME﹣MD|取最大值2
;(2) 当△A′B′D为等腰三角形时,t的值为﹣2﹣4
、4、﹣2+4
或9
【解析】
(1)将x=-2代入直线AB解析式中即可求出点C的坐标,利用分割图形求面积法结合四边形AOBD的面积为38即可得出关于m的一元一次方程,解之即可得出m值,在x轴负半轴上找出点E关于y轴对称的点E′(-8,0),连接E′D并延长交y轴于点M,连接DM,根据三角形三边关系即可得出此时|ME-MD|最大,最大值为线段DE′的长度,由点D、E′的坐标利用待定系数法即可求出直线DE′的解析式,将x=0代入其中即可得出此时点M的坐标,再根据两点间的距离公式求出线段DE′的长度即可;
(2)根据平移的性质找出平移后点A′、B′的坐标,结合点D的坐标利用两点间的距离公式即可找出B′D、A′B′、A′D的长度,再根据等腰三角形的性质即可得出关于t的方程,解之即可得出t值,此题得解.
(1)当x=﹣2时,y=
,
∴C(﹣2,
),
∴S四边形AOBD=S△ABD+S△AOB=
CD(xA﹣xB)+
OAOB=3m+8=38,
解得:m=10,
∴当四边形AOBD的面积为38时,点D的坐标为(﹣2,10).
在x轴负半轴上找出点E关于y轴对称的点E′(﹣8,0),连接E′D并延长交y轴于点M,连接DM,此时|ME﹣MD|最大,最大值为线段DE′的长度,如图1所示.
DE′=
.
设直线DE′的解析式为y=kx+b(k≠0),
将D(﹣2,10)、E′(﹣8,0)代入y=kx+b,
,解得:
,
∴直线DE′的解析式为y=
x+
,
∴点M的坐标为(0,
).
故当点M的坐标为(0,
)时,|ME﹣MD|取最大值2
.
(2)∵A(0,8),B(﹣6,0),
∴点A′的坐标为(t,8),点B′的坐标为(t﹣6,0),
∵点D(﹣2,10),
∴B′D=
,
A′B′=
=10,A′D=
.
△A′B′D为等腰三角形分三种情况:
①当B′D=A′D时,有
=
,
解得:t=9;
②当B′D=A′B′时,有
=10,
解得:t=4;
③当A′B′=A′D时,有10=
,
解得:t1=﹣2﹣4
(舍去),t2=﹣2+4
.
综上所述:当△A′B′D为等腰三角形时,t的值为﹣2﹣4
、4、﹣2+4
或9.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2019次追上甲时的位置在( )

A.AB上B.BC上C.CD上D.AD上
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.

第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上的点A,B,C,D,E表示连续的五个整数,对应的数分别为a,b,c,d,e.
(1)若a=-3,则e = ;
(2)若a+e=0,则代数式b+c+d= ;
(3)若d是最大的负整数,求代数式
的值(写出求解过程).(4)若e=4,F也为数轴上一点,且BE=2FE,则F表示的数为 ;

-
科目: 来源: 题型:
查看答案和解析>>【题目】探索规律,观察下面算式,解答问题.
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
…
(1)请猜想:1+3+5+7+9+…+19=________;
(2)请猜想:1+3+5+7+9+…+(2n-1)=________;
(3)试计算:101+103+…+197+199.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴交的点恰为⊙A与x轴的交点,求该抛物线的解析式;
(3)试判断C是否在抛物线上?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有( )
①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=
AEEG;④若AB=4,AD=5,则CE=1.
A. ①②③④ B. ①②③ C. ①③④ D. ①②
相关试题