【题目】如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.
(1)求∠AOB的度数:
(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数
(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE= .
![]()
参考答案:
【答案】(1)44°;(2)66°或110°;(3)33°或55°
【解析】
(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;
(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC外部,分别求出∠COD的度数即可;
(3)根据(2)的结论以及角平分线的定义解答即可.
解:(1)由射线OB平分∠AOC可得∠AOC =2∠BOC,∠AOB=∠BOC,
设∠BOC=x,则∠AOC=2x,
依题意列方程90°﹣2x=x﹣42°,
解得:x=44°,
即∠AOB=44°.
(2)由(1)得,∠AOC=88°,
①当射线OD在∠AOC内部时,如图,
![]()
∵∠AOC=4∠AOD,∴∠AOD=22°,
∴∠COD=∠AOC﹣∠AOD=66°;
②当射线OD在∠AOC外部时,如图,
![]()
由①可知∠AOD=22°,
则∠COD=∠AOC+∠AOD=110°;
故∠COD的度数为66°或110°;
(3)∵OE平分∠AOD,∴∠AOE=
,
当射线OD在∠AOC内部时,如图,
![]()
∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;
当射线OD在∠AOC外部时,如图,
![]()
∴∠BOE=∠AOB+∠AOE=44°+11°=55°.
综上所述,∠BOE度数为33°或55°.
故答案为:33°或55°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,到达A点停止运动;同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,到达D点停止运动,设点E移动的时间为t(秒).
(1)当t=1时,求四边形BCFE的面积;
(2)设四边形BCFE的面积为S,求S与t之间的关系式,并写出t的取值范围;
(3)若F点到达D点后立即返回,并在线段CD上往返运动,当E点到达A点时它们同时停止运动,求当t为何值时,以E,F,D三点为顶点的三角形是等腰三角形,并求出此的等腰三角形的面积S△EDF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,
,若
,则还需添加的一个条件有( )

A.
种B.
种C.
种D.
种 -
科目: 来源: 题型:
查看答案和解析>>【题目】黑板上写有1,
,
,
,…,
共100个数字,每次操作先从黑板上的数中选取2个数a,b,然后删去a,b,并在黑板上写上数a+b+1,则经过_____次操作后,黑板上只剩下一个数,这个数是_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面的三行单项式
x,2x2,4x3,8x4,16x5…①
﹣2x,4x2,﹣8x3,16x4,﹣32x5…②
2x,﹣3x2,5x3,﹣9x4,17x5…③
根据你发现的规律,完成以下各题:
(1)第①行第8个单项式为 ;第②行第2020个单项式为 .
(2)第③行第n个单项式为 .
(3)取每行的第9个单项式,令这三个单项式的和为A.计算当x=
时,256(A+
)的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是
的角平分线,
,
,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是


A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:当点C在线段AB上,AC=nAB时,我们称n为点C在线段AB上的点值,记作dC﹣AB=n.理解:如点C是AB的中点时,即AC=
AB,则dC﹣AB=
;反过来,当dC﹣AB=
时,则有AC=
AB.因此,我们可以这样理解:dC﹣AB=n与AC=nAB具有相同的含义.
应用:(1)如图1,点C在线段AB上,若dC﹣AB=
,则AC= AB;若AC=3BC,则dC﹣AB= ;(2)已知线段AB=10cm,点P、Q分别从点A和点B同时出发,相向而行,当点P到达点B时,点P、Q均停止运动,设运动时间为ts.
①若点P、Q的运动速度均为1cm/s,试用含t的式子表示dP﹣AB和dQ﹣AB,并判断它们的数量关系;
②若点P、Q的运动速度分别为1cm/s和2cm/s,点Q到达点A后立即以原速返回,则当t为何值时,dP﹣AB+dQ﹣AB=
?拓展:如图2,在三角形ABC中,AB=AC=12,BC=8,点P、Q同时从点A出发,点P沿线段AB匀速运动到点B,点Q沿线段AC,CB匀速运动至点B.且点P、Q同时到达点B,设dP﹣AB=n,当点Q运动到线段CB上时,请用含n的式子表示dQ﹣CB.
相关试题