【题目】如图,将长方形ABC沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E. ![]()
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求AE.
参考答案:
【答案】
(1)解:△BDE是等腰三角形,理由是:
由折叠得:∠EBD=∠DBC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠EBD,
∴BE=DE,
∴△BDE是等腰三角形;
(2)解:设AE=x,则BE=DE=8﹣x,
∵四边形ABCD是矩形,
∴∠A=90°,
∴AB2+AE2=BE2,
∴42+x2=(8﹣x)2,
x=3,
∴AE=3.
【解析】(1)由折叠和平行线性质可得:∠ADB=∠EBD,根据等角对等边得BE=DE,所以△BDE是等腰三角形;(2)设AE=x,则BE=DE=8﹣x,根据勾股定理列方程可求得AE的长.
【考点精析】利用勾股定理的概念和矩形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;矩形的四个角都是直角,矩形的对角线相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )
A. 3cm B. 7cm C. 7cm或3cm D. 7cm或5cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B,C重合),经过点O、P折叠该纸片,得点B′和折痕OP(如图①)经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②),当点C′恰好落在OA上时,点P的坐标是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.
(1)图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.
(2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF与BE、CF间的关系还存在吗?
(3)若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=6,AC=4,BC=5.
(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与
的比值; 
(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB'与MC'重合,折痕为MN,求AN的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把关于x的方程x2-2x+2=0配方成为a(x-2)2+b(x-2)+c=0的形式,得________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
相关试题