【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长.
![]()
参考答案:
【答案】(1)证明见解析;(2)
cm.
【解析】试题分析:(1)根据EH∥BC即可证明.
(2)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得
,列出方程即可解决问题.
试题解析:(1)证明:∵四边形EFGH是正方形,
∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC.
(2)∵∠EFD=∠FEO=∠FDO=90°,
∴四边形EFDO是矩形,
∴EF=DO,设正方形EFGH的边长为x,
∵△AEH∽△ABC,
∴
,
∴
,
∴x=
,
∴正方形EFGH的边长为
cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45度.给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是( )

A. ①②③ B. ①②④ C. ①②⑤ D. ①②③⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在Rt△ABC中,∠C=900,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数y=kx+b的图象与反比例函数
的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,OA=R,求R关于x的函数关系式;
(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从左到右,在每个小格子都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.







(
)可求得
__________.第
个格子中的数为__________.(
)判断:前
个格子中所填整数之和是否可能为
?若能,求出
的值;若不能,请说明理由.(
)如果
、
为前三个格子中的任意两个数,那么所有的
的和可以通过计算:
得到,若
,
为前
个格子中的任意两个数,则所有的
的和为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知矩形的面积为1,设该矩形的长为x,周长为y,小彬借鉴以前研究函数的经验,对函数y随自变量x的变化进行了探究;以下是小彬的探究过程:
(1)结合问题情境分析: ①y与x的函数表达式为;②自变量x的取值范围是 .
(2)下表是y与x的几组对应值.x
…



1
2
3
4
…
y
…


5
4
m


…
①写出m的值;
②画出函数图象;
③观察图象,写出该函数两条不同类型的性质.
相关试题