【题目】如图,直线
与x轴交于点A,与y轴交于B,点P是x轴上的一个动点.
(1)求A、B两点的坐标;
(2)当点P在x轴正半轴上,且△APB的面积为8时,求直线PB的解析式;
(3)点Q在第二象限,是否存在以A、B、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标,若不存在,请说明理由.
![]()
参考答案:
【答案】(1)B(0,4),A(﹣3,0);(2)y=﹣x+4;(3)(﹣5,4)或(﹣
,4)
【解析】
(1)根据坐标轴上点的特点即可得出结论;
(2)设出点P坐标,利用△PAB的面积建立方程求出P的坐标,最后用待定系数法求解即可;
(3)先判断出点Q在直线y=4上,再分两种情况讨论计算即可.
(1)令x=0时,y=4, ∴B(0,4),
令y=0时,
x+4=0,
∴x=﹣3,
∴A(﹣3,0);
(2)设点P(m,0)(m>0), ∵A(﹣3,0),
∴AP=m﹣(﹣3)=m+3,
∵△APB的面积为8,
∴S△APB=
AP×OB=
(m+3)×4=8,
∴m=1,
∴P(1,0),
∵B(0,4),
∴设直线PB的解析式为y=kx+4,
∴k+4=0,
∴k=﹣4,
∴直线PB的解析式为y=﹣x+4;
(3)如图,
∵以A、B、P、Q为顶点的四边形是菱形,且P在x轴上,
∴BQ∥AP,
∴点Q在直线y=4上,
由(1)知,A(﹣3,0),B(0,4),
∴AB=5,
∵点Q在第二象限内,
∴①当AB为菱形的边时,
∴BQ'=AB=5,
∴Q'(﹣5,4),
![]()
②当AB为菱形的对角线时,AB,PQ互相垂直平分,
∵直线AB的解析式为y=
x+4,
∴直线PQ的解析式为y=﹣
x+
,
当y=4时,则﹣
x+
=4,
∴x=﹣
,
∴Q(﹣
,4),
∴满足条件的点Q的坐标为(﹣5,4)或(﹣
,4).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校七年级2班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

(l)甲队成绩的中位数是____分,乙队成绩的众数是____分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队的平均成绩是9分,方差是1.4分,则成绩较为整齐的是哪个队?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?
(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】O为直线AB上的一点,OC⊥OD,射线OE平分∠AOD.

(1)如图①,判断∠COE和∠BOD之间的数量关系,并说明理由;
(2)若将∠COD绕点O旋转至图②的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;
(3)若将∠COD绕点O旋转至图③的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b与反比例函数
的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;
(2)根据图象直接写出
的x的取值范围;(3)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,俄罗斯方块游戏中,图形
经过平移使其填补空位,则正确的平移方式是( )[Failed to download image : http://192.168.0.10:8086/QBM/2019/8/9/2265110730670080/2266396395864065/STEM/34cd169bb880437797498d7a59a34864.png]
A.先向右平移5格,再向下平移3格
B.先向右平移4格,再向下平移5格
C.先向右平移4格,再向下平移4格
D.先向右平移3格,再向下平移5格
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断

A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误
相关试题