【题目】如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:连结OA、OC,如图,![]()
∵PA切⊙于点A,∴OA⊥PA,∴∠OAP=90°,
∵点B为OP的中点,∴OB=PB,∴OA=
OP=1,
∴∠P=30°,∠POA=60°,
∵AC∥OP,∴∠OAC=∠POA=60°,
而OA=OC,∴△OAC为等边三角形,∴∠AOC=60°,
∴图中阴影部分的面积=S扇形AOC﹣S△AOC=
.
故选C.
【考点精析】关于本题考查的扇形面积计算公式,需要了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.

(1)求证:AB是⊙O的切线;
(2)若CF=4,DF=
,求⊙O的半径r及sinB. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形纸片ABCD,AB=a,BC=b,且b<a<2b,则∠ADC的平分线DE折叠纸片,点A落在CD边上的点F处,再沿∠BEF的平分线EG折叠纸片,点B落在EF边上的点H处,则四边形CGHF的周长是( )

A.2a
B.2b
C.2(a﹣b)
D.a+b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则
的值是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=10,AD=8,则AE的长为

-
科目: 来源: 题型:
查看答案和解析>>【题目】有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是 , 此时按游戏规则填写空格,所有可能出现的结果共有种.

相关试题