【题目】如图,反比例函数y=
(x>0)的图像交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.![]()
参考答案:
【答案】3
【解析】解:连接OB,
∵四边形OABC是矩形,
∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,
∵D、E在反比例函数y=
(x>0)的图象上,
∴△OAD的面积=△OCE的面积,
∴△OBD的面积=△OBE的面积=
四边形ODBE的面积=3,
∵BE=2EC,∴△OCE的面积=
△OBE的面积=
,
∴k=3;
所以答案是:3.
【考点精析】认真审题,首先需要了解比例系数k的几何意义(几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积).
-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下列一段文字,再回答后面的问题.
已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=
,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(3,3),B(﹣2,﹣1),试求A,B两点间的距离;
(2)已知A,B在平行于y轴的直线上,点A的纵坐标为7,点B的纵坐标为﹣2,试求A,B两点间的距离;
(3)已知一个三角形各顶点坐标为A(0,5),B(﹣3,2),C(3,2),你能判断此三角形的形状吗?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F,且∠1+∠2=90°.猜想∠2与∠3的关系并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度数.
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=
. 
(1)求这条抛物线的表达式及对称轴;
(2)联结AB、BC,求∠ABC的正切值;
(3)若点D在x轴下方的对称轴上,当S△DBC=S△ADC时,求点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将
ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将
CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的个数有( ).
①
CMP∽
BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2
;
⑤当
ABP≌
AND时,BP=4
-4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤ -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地出发,沿同一路线驶向B地. 甲车先出发匀速驶向B地,40 min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时. 由于满载货物,为了行驶安全,速度减少了50 km/h,结果与甲车同时到达B地. 甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60 km/h;③乙出发80 min追上甲;④乙刚到达货站时,甲距B地180 km.其中正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个
相关试题