【题目】甲、乙两车从A地出发,沿同一路线驶向B地. 甲车先出发匀速驶向B地,40 min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时. 由于满载货物,为了行驶安全,速度减少了50 km/h,结果与甲车同时到达B地. 甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60 km/h;③乙出发80 min追上甲;④乙刚到达货站时,甲距B地180 km.其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
参考答案:
【答案】D
【解析】
由线段
所代表的意思,结合装货半小时,可得出
的值,从而判断出①成立;
结合路程=速度×时间,能得出甲车的速度,从而判断出②成立;
设出乙车刚出发时的速度为
千米/时,则装满货后的速度为
千米/时,由路程=速度×时间列出关于
的一元一次方程,解出方程即可得知乙车的初始速度,由甲车先跑的路程÷两车速度差即可得出乙车追上甲车的时间,从而得出③成立;
由乙车刚到达货站的时间,可以得出甲车行驶的总路程,结合
、
两地的距离即可判断④也成立.
综上可知①②③④皆成立.
线段
代表乙车在途中的货站装货耗时半小时,
(小时),即①成立;
分钟
小时,
甲车的速度为
(千米/时),即②成立;
设乙车刚出发时的速度为
千米/时,则装满货后的速度为
千米/时,
根据题意可知:
,
解得:
,
乙车发车时,甲车行驶的路程为
(千米),
乙车追上甲车的时间为
(小时),
小时
分钟,即③成立;
乙车刚到达货站时,甲车行驶的时间为
小时,
此时甲车离
地的距离为
(千米),即④成立;
综上可知正确的有:①②③④.
故选:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )

A. 3(m-1) B.
(m-2) C. 1 D. 3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2 , b1≠b2 , 那么称这两个一次函数为“平行一次函数”. 如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”

(1)若函数y=kx+b的图象过点(3,1),求b的值;
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.

(1)求证:∠HEA=∠CGF;
(2)当AH=DG时,求证:菱形EFGH为正方形. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售甲、乙两种商品,现有如下信息: 请结合以上信息,解答下列问题:
(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在正比例函数y=kx的图象l上,则点A2016的坐标是_____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】根据题意,解答问题:
(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.

相关试题