【题目】在△ABC纸片中,∠ACB=90°,AC=6,BC=8,沿过其中一个顶点的直线把△ABC剪开,若剪得的两个三角形中仅有一个是等腰三角形,那么这个等腰三角形的面积不可能是( )
A.14.4
B.19.2
C.18.75
D.17
参考答案:
【答案】D
【解析】解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8, ∴AB=
=10,S△ABC=
ACBC=24.
沿过其中一个顶点的直线把△ABC剪开,若剪得的两个三角形中仅有一个是等腰三角形,有四种情况:①当AC=AP=6时,如图1所示,![]()
S等腰△ACP=
S△ABC=
×24=14.4;②当BC=BP=8时,如图2所示,![]()
S等腰△BCP=
S△ABC=
×24=19.2;③当PA=PB时,如图3所示,![]()
AC2+CP2=PA2 , 即62+(8﹣PB)2=PB2 ,
解得:PB=
,
∴S等腰△PAB=
PBAC=
×
×6=
=18.75;④当CA=CP=6时,如图4所示,![]()
S等腰△CAP=
CACP=
×6×6=18.
综上所述:等腰三角形的面积可能为14.4、19.2、18.75或18.
故选D.
【考点精析】本题主要考查了等腰三角形的性质和勾股定理的概念的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.

(1)求一次函数y=kx+b的解析式;
(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;
(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( )

A.40°
B.50°
C.60°
D.70° -
科目: 来源: 题型:
查看答案和解析>>【题目】随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有( ) ①“快车”行驶里程不超过5公里计费8元;
②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;
③A点的坐标为(6.5,10.4);
④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是线段AB上一点,AB=4cm,AO=1cm,若线段AB绕点O顺时针旋转120°到线段A′B′的位置,则线段AB在旋转过程中扫过的图形的面积为 cm2 . (结果保留π)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠BAC=60°,AC与BC交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是 . (把所有正确结论的序号都填在横线上) ①OG=
AB;
②与△EGD全等的三角形共有5个;
③S四边形CDGF>S△ABF;
④由点A、B、D、E构成的四边形是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐标系中的三点.

(1)①请画出△ABC关于y轴对称的△A1B1C1;
②画出△A1B1C1向下平移3个单位得到的△A2B2C2;
(2)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.
相关试题