【题目】如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( ) ![]()
A.40°
B.50°
C.60°
D.70°
参考答案:
【答案】B
【解析】解:连接OC,如图所示: ![]()
∵圆心角∠BOC与圆周角∠CDB都对
,
∴∠BOC=2∠CDB,又∠CDB=20°,
∴∠BOC=40°,
又∵CE为圆O的切线,
∴OC⊥CE,即∠OCE=90°,
则∠E=90°﹣40°=50°.
故选B
连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).
(1)画树状图或列表,写出点Q所有可能的坐标;
(2)求点Q(x,y)在函数y=﹣x+5图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2.

(1)求证:∠ABC=∠D;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.

(1)求一次函数y=kx+b的解析式;
(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;
(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有( ) ①“快车”行驶里程不超过5公里计费8元;
②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;
③A点的坐标为(6.5,10.4);
④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC纸片中,∠ACB=90°,AC=6,BC=8,沿过其中一个顶点的直线把△ABC剪开,若剪得的两个三角形中仅有一个是等腰三角形,那么这个等腰三角形的面积不可能是( )
A.14.4
B.19.2
C.18.75
D.17 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是线段AB上一点,AB=4cm,AO=1cm,若线段AB绕点O顺时针旋转120°到线段A′B′的位置,则线段AB在旋转过程中扫过的图形的面积为 cm2 . (结果保留π)

相关试题