【题目】如图,∠A=2∠C,BD平分∠ABC,BC=8,AB=5,则AD=________
![]()
参考答案:
【答案】3
【解析】
在BC上截取BE=AB,利用“边角边”证明△ABD和△BED全等,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠BED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,等量代换得到EC=AD,即得答案BC=BE+EC=AB+AD,再代入数据即可求解.
(1)在BC上截取BE=BA,如图,
![]()
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△BED中,
,
∴△ABD≌△BED,
∴DE=AD,∠BED=∠A,
又∵∠A=2∠C,
∴∠BED=∠C+∠EDC=2∠C,
∴∠EDC=∠C,
∴ED=EC,
∴EC=AD
∴BC=BE+EC=AB+AD,
∵BC=8,AB=5,
∴AD=BC-AB=8-5=3.
故答案为:3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一棵树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.
(1)河的宽度是 米.
(2)请你说明他们做法的正确性.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将下面的证明过程补充完整,括号内写上相应理由或依据:已知,如图,
,
,垂足分别为D、F,
,请试说明
.
证明:∵
,
(已知)∴
(____________________________)∴
________(____________________________)∴
________(____________________________)又∵
(已知)∴
________(____________________________)∴
________(____________________________)∴
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y=
(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:
,
.
(1)请找出图中一对全等的三角形,并说明理由;
(2)若
,
,求
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=
,则EC=______
-
科目: 来源: 题型:
查看答案和解析>>【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:

(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1, 并写出点C1的坐标;
②作出△ABC关于原点O对称的△A2B2C2, 并写出点C2的坐标;
(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.
相关试题