【题目】如图,矩形
,点
、
分别在
轴、
轴上, 点
坐标为
, 连接
,将矩形
沿
折叠,点
的对应点为点
,则点
的坐标为_____(用含
的式子表示).
![]()
参考答案:
【答案】![]()
【解析】
过点D做DE⊥x轴,垂足为E,交BC延长线于点F.证明△OED∽△DFB,相似比为1:2,设DE=m,表示各线段关系,求出m,进而求出点
的坐标.
解:如图,过点D做DE⊥x轴,垂足为E,交BC延长线于点F.
∵矩形
中,点
坐标为
,
∴OA=k,AB=2k.
∵矩形
沿
折叠,
∴△OBD≌△OBA,
∴OD= OA=k,BD=BA=2k,∠ODB=∠OAB=90°,
∴∠FDB+∠EDO=90°.
∵∠EOD+∠EDO=90°,
∴∠EOD=∠FDB.
∵∠F=∠DEO=90°,
∴△OED∽△DFB,
∴
.
设DE=m,则BF=2m,OE=2m-k,
∴2k-m=2(2m-k)
∴
,
∴![]()
∴点D坐标为:
.
![]()
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一副含
和
角的三角板
和
叠合在一起,边
与
重合,
(如图1),点
为边
的中点,边
与
相交于点
,此时线段
的长是 . 现将三角板
绕点
按顺时针方向旋转(如图2),在
从
到
的变化过程中,点
相应移动的路径长共为 . (结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(3,0),∠ABO=30°,且AB⊥BC.
(1)求直线BC和AB的解析式;
(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;
(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请求出这两点的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AD=2
,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.

相关试题