【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
![]()
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
参考答案:
【答案】(1)画图参见解析;(2)画图参见解析,路径长为
π.
【解析】试题分析:(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接,再利用弧长公式进行计算即可.
试题解析:(1)如图所示,△A1B1C1即为所求;
![]()
(2)如图所示,△A2B2C2即为所求,
∵OB=
,∠BOB2=90°,
∴点B旋转到点B2所经过的路径长为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列多项式能直接用完全平方公式进行因式分解的是( )
A.x2+2x﹣1B. x2﹣x +
C.x2+xy+y2D.9+x2﹣3x -
科目: 来源: 题型:
查看答案和解析>>【题目】学校书法兴趣小组准备到文具店购买A、B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余的部分仍按零售价销售.
(1)如果全组共有20名同学,若每人各买1支A型毛笔和2支B型毛笔,共支付145元;若每人各买2支A型毛笔和1支B型毛笔,共支付129元,这家文具店的A、B型毛笔的零售价各是多少?
(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的A型毛笔的零售价)90%出售.现要购买A型毛笔a支(a>40),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有25m3木料,那么用多少m3的木料做桌面,多少m3的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.
(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某单位在疫情期间用 3000 元购进 A、B 两种口罩1100 个,购买A种口罩与购买 B 种口罩的费用相同,且A种口罩的单价是 B 种口罩单价的 1.2 倍求 A,B 两种口罩的单价各是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求x为何值时,PQ⊥AC;
(2)设△PQD的面积为
,当0<x<2时,求y与x的函数关系式;(3)当0<x<2时,求证:AD平分△PQD的面积;
(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).

相关试题