【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.
参考答案:
【答案】
(1)
解:设桂味的售价为每千克x元,糯米糍的售价为每千克y元;
根据题意得:
,
解得:
;
答:桂味的售价为每千克15元,糯米糍的售价为每千克20元.
(2)
解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,
根据题意得:12﹣t≥2t,
∴t≤4,
∵W=15t+20(12﹣t)=﹣5t+240,
k=﹣5<0,
∴W随t的增大而减小,
∴当t=4时,W的最小值=220(元),此时12﹣4=8;
答:购买桂味4千克,糯米糍8千克时,所需总费用最低.
【解析】(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据单价和费用关系列出方程组,解方程组即可;
(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得出12﹣t≥2t,得出t≤4,由题意得出W=﹣5t+240,由一次函数的性质得出W随t的增大而减小,得出当t=4时,W的最小值=220(元),求出12﹣4=8即可. 本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.(1)如图,若点D为线段AC的中点,求证:AD=CE;

(2)如图,若点D为线段AC上任意一点,求证:AD=CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△ABlCl;
(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点D是△ABC所在平面内一点,连接AD、CD.
(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;
(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将
沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC. 
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为
的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交
于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.
相关试题