【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△ABlCl;
(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______.
![]()
参考答案:
【答案】(﹣
,0)
【解析】
(1)根据网格结构找出点B,点C关于y轴对称的点B1,C1的位置,顺次连接各点即可;
(2)找出点C关于x轴的对称点C′,连接BC′,BC′与x轴的交点即可为所求作P点;根据对称性写出点C′的坐标,再根据点B,C′的坐标求出点P到CC′的距离,然后求出OP的长度即可得到点P的坐标.
(1)△ABC关于y轴对称的△ABlCl如图所示;
![]()
(2)如图,点P即为所求作的到点B与点C的距离之和最小,
点C′的坐标为(﹣1,﹣1),
∵点B(﹣2,2),∴点P到CC′的距离为
=
,
∴OP=1+
=
,点P(﹣
,0).故答案为:(﹣
,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;
(2)试判断四边形ABNE的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.
(1)填空:
解:过点P作EF∥AB,
∴∠B+∠BPE=180°
∵AB∥CD,EF∥AB
∴ (如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∠EPD+ =180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的数量关系,并说明理由.
(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠1=∠2,∠3=∠E.试说明:∠A=∠EBC.(请按图填空,并补理由.)
证明:∵∠1=∠2 (已知),

∴________∥_______( ),
∴∠E=∠_______ ( ),
又∵∠E=∠3 (已知),
∴∠3=∠____________ ( 等量代换 ),
∴_________∥________ (内错角相等,两直线平行),
∴∠A=∠EBC ( ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.
(1)证明:AB=AD+BC;
(2)判断△CDE的形状?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,这是一个“数值转换机”(箭头为数进入转换机的路径,方框是对进入的数进行转换的转换机).
(1)当输入7、-2018这两个数时,求出它们各自输出的结果;

(2)若输入一非零数,其输出结果为0,则输入的数是多少?(找一个即可)
(3)若输出的结果是2,请直接写出输入的数.(用含自然数n的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】寒假结束了,为了了解九年级学生寒假体育锻炼情况,王老师调查了九年级所有学生寒假体育锻炼时间,并随即抽取10名学生进行统计,制作出如下统计图表:
编号
成绩
编号
成绩
①
B
⑥
A
②
A
⑦
B
③
B
⑧
C
④
B
⑨
B
⑤
C
⑩
A
根据统计图表信息解答下列问题:

(1)将条形统计图补充完整;
(2)若用扇形统计图来描述10名学生寒假体育锻炼情况,分别求A,B,C三个等级对应的扇形圆心角的度数;
(3)已知这次统计中共有60名学生寒假体育锻炼时间是A等,请你估计这次统计中B等,C等的学生各有多少名?
相关试题