【题目】因式分解:ax2﹣4a= .
参考答案:
【答案】a(x﹣2)(x+2)
【解析】解:ax2﹣4a
=a(x2﹣4)
=a(x﹣2)(x+2).
所以答案是:a(x﹣2)(x+2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy,已知二次函数y=﹣
x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;
(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;
(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】利用不等式的基本性质求下列不等式的解集,并说出变形的依据.
(1)若x+2 012>2 013,则x__________;(______________________________)
(2)若2x>-
,则x__________;(______________________________)(3)若-2x>-
,则x__________;(______________________________)(4)若-
>-1,则x__________.(______________________________) -
科目: 来源: 题型:
查看答案和解析>>【题目】指出下列各式成立的条件:
(1)由mx<n,得x<
;(2)由a<b,得ma>mb;
(3)由a>-5,得a2≤-5a;
(4)由3x>4y,得3x-m>4y-m.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.

(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】当x=2时,代数式x2(2x)3﹣x(x+8x4)的值是( )
A.4
B.-4
C.0
D.1 -
科目: 来源: 题型:
查看答案和解析>>【题目】在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=
AD,点N是折线AB﹣BC上的一个动点.
(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为 .
(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,
①若点A′落在AB边上,则线段AN的长度为;
②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;
③当点A′落在对角线BD上时,如图4,求
的值.
相关试题