【题目】在我县中小学读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查情况进行了统计,并绘制了不完整条形统计图和扇形统计图.
![]()
请你结合图中的信息,解答下列问题(其中(1)、(2)直接填答案即可);
(1)本次调查了 名学生;
(2)被调查的学生中,最喜爱丁类图书的有 人,最喜爱甲类图书的人数被调查人数的 %.
(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校约有学生1800人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.
参考答案:
【答案】(1)200;(2)15;40;(3)女生和男生分别有216人,144人.
【解析】
(1)根据百分比=频数÷总数可得共调查的学生数;
(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;
(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.
解:(1)共调查的学生数:
40÷20%=200(人),
故答案为200;
(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);
最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;
故答案为15;40.
(3)设男生人数为x人,则女生人数为1.5x人,由题意得:
x+1.5x=1800×20%,
解得:x=144,
当x=144时,1.5x=216.
答:该校最喜爱丙类图书的女生和男生分别有216人,144人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,求AC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是( )

A.AB
B.BC
C.CD
D.DA -
科目: 来源: 题型:
查看答案和解析>>【题目】某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )

A. 得分在70~80分之间的人数最多
B. 该班的总人数为40
C. 得分在90~100分之间的人数最少
D. 及格(≥60分)人数是26
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.

(1)AD与BC平行吗?试写出推理过程;
(2)求∠DAC和∠EAD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸每个小方格是边长为1个单位长度的正方形,在平面直角坐标系中,点A(1,0),B(5,0),C(a,b)D(1,4).
(1)描出A、B、C、D四点的位置.如图,则a= ;b= ;
(2)四边形ABCD的面积是 ;(直接写出结果)
(3)把四边形ABCD向左平移6个单位,再向下平移1个单位得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'B'C'D'的坐标.

相关试题