【题目】某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:
![]()
对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )
A. 甲运动员得分的极差大于乙运动员得分的极差
B. 甲运动员得分的中位数大于乙运动员得分的中位数
C. 甲运动员得分的平均数大于乙运动员得分的平均数
D. 甲运动员的成绩比乙运动员的成绩稳定
参考答案:
【答案】D
【解析】试题分析:结合折线统计图,利用数据逐一分析解答即可.
解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确,不符合题意;
B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误,符合题意;
C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确,不符合题意;
D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项正确,不符合题意.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数
的图像如图所示,点A0位于坐标原点,点A1 , A2 , A3 , …,A2008在y轴的正半轴上,点B1 , B2 , B3 , …,B2008在二次函数
位于第一象限的图像上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长=
-
科目: 来源: 题型:
查看答案和解析>>【题目】图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b的形状拼成一个正方形。
(1)你认为图b中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图中阴影部分的面积。


方法1:
方法2:
(3)观察图b你能写出下列三个代数式之间的等量关系吗?
代数式:
(4)根据(3)题中的等量关系,解决如下问题:
若
,则
= 。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按HUI图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知小敏家距学校5km,小飞家距小敏家3km.若小飞家距学校距离为xkm,则x满足( )
A.x=2B.2≤x≤8C.2≤x≤5D.2<x<8
-
科目: 来源: 题型:
查看答案和解析>>【题目】请将下列证明过程补充完整:
已知:如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求证:∠E=∠F

证明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性质)
∴AE∥PF( )
∴∠E=∠F( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(0,-1),B(0,3),C(-3,2).
(1) 描出A、B、C三点的位置,并画出三角形ABC;
(2) 三角形ABC中任意一点P(x,y)平移后的对应点为P1(x+3,y-2)将三角形ABC作同样的平移得到三角形A1B1C1,作出平移后的图形,并写出点A1、B1、C1的坐标;
(3) 求三角形A1B1C1的面积.

相关试题