【题目】如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证: ![]()
(1)△ABF是等腰三角形;
(2)四边形ABFE是菱形.
参考答案:
【答案】
(1)证明:∵AD∥BC,
∴∠AFB=∠EBF,
∵BF平分∠ABC,
∴∠ABF=∠EBF,
∴∠AFB=∠ABF,
∴AB=AF,即△ABF是等腰三角形
(2)证明:由(1)得:AB=AF,
同理:AB=BE,
∴AF=BE,
∵AF∥BE,
∴四边形ABFE是平行四边形,
又∵AB=AF,
∴四边形ABFE是菱形
【解析】(1)由平行线的性质和角平分线得出∠AFB=∠ABF,即可得出结论;(2)由(1)得:AB=AF,同理:AB=BE,证出AF=BE,由AF∥BE,得出四边形ABFE是平行四边形,即可得出结论.
【考点精析】本题主要考查了等腰三角形的判定和菱形的判定方法的相关知识点,需要掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个点从数轴上的原点开始,先向左移动
到达
点,再向左移动
到达
点,然后向右移动
到达
点(1)用1个单位长度表示
,请你在数轴上表示出
、
、
三点的位置;
(2)把点
到点
的距离记为
,则
=_______
.(3)若点
以每秒
的速度向左移动,同时
、
点分别以每秒
、
的速度向右移动.设移动时间为
秒,试探索:
的值是否会随着
的变化而改变?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E是ABCD的边CD的中点,延长AE交BC的延长线于点F.

(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=10,EF=6,求CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市公交公司为应对春运期间的人流高峰,计划购买A、B两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,
(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?
(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题.
大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,但是由于1<
<2,所以
的整数部分为1,将
减去其整数部分1,差就是小数部分
-1,根据以上的内容,解答下面的问题:(1)
的整数部分是 ,小数部分是 ;(2)1+
的整数部分是 ,小数部分是 ;(3)若设2+
整数部分是x,小数部分是y,求x-y的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC=70°.
(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

相关试题