【题目】如图,把一张三角形纸片沿DE折叠,当点A落在四边形BCED的内部时,∠A、∠1、∠2之间的关系是( )
![]()
A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2
C. 3∠A=∠1+∠2 D. 4∠A=∠1+∠2
参考答案:
【答案】B
【解析】
本题考查的是三角形内角和定理.需要注意的是弄清图中角与角之间的关系列出方程以及三角形内角和为180°来求解.
解:∵在△ADE中:∠A+∠ADE+∠AED=180°,
∴∠A=180°-∠ADE-∠AED,
由折叠的性质得:∠1+2∠ADE=180°,∠2+2∠AED=180°,
∴∠1+2∠ADE+∠2+2∠AED=360°,
∴∠1+∠2=360°-2∠ADE-2∠AED=2(180°-∠ADE-∠AED)=2∠A,
∴2∠A=∠1+∠2.
即当△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时2∠A=∠1+∠2这种数量关系始终保持不变.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的边BC的中线,E是AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF,BF交AC于G.
(1)若四边形ADCF是菱形,试证明△ABC是直角三角形;
(2)求证:CG=2AG.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP=x,△PBF的面积为S1,△PDE的面积为S2
(1)求证:BP⊥DE;
(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围;
(3)当∠PBF=30°时,求S1﹣S2的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲同学用图3-①所示的方法作出了点C,表示数
,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC.(1)请说明甲同学这样做的理由;
(2)仿照甲同学的作法,在图3-②所给的数轴上描出表示-
的点A.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中∠ABC=90°,∠A=30°,BC=2cm,动点P以3cm/s的速度由A沿射线AC方向运动,动点Q同时以1cm/s的速度由B向CB的延长线方向运动,连PQ交直线AB于D,则当运动时间为s时,△ADP是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)解方程:x2=2x.
(2)如图,Rt△ABC中,∠BAC=90°,AB=5,AC=12,将△ABC向右平移至△A′B′C′的位置,使得四边形ABB′A′为菱形,求B′C的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点E,F分别在边AB,BC上,沿直线EF将△EBF翻折,使顶点B的对应点B1落在AC边上,且EB1⊥AC.求证:四边形BFB1E是菱形.

相关试题