【题目】如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.
(1)求证:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.
![]()
参考答案:
【答案】(1)证明见解析(2)6
【解析】试题分析:(1)连接OD,因为DE为⊙O的切线,所以OD⊥DE,又OC⊥OB,然后根据互余的关系可证∠1=∠2;(2)由(1)中∠1=∠2可得EF=ED,设DE=x,在Rt△ODE中,由勾股定理求得x =4,然后证Rt△EOD∽Rt△EGA.可求出AG的长.
试题解析:(1)证明:如图,连接OD,
![]()
∵DE为⊙O的切线,∴OD⊥DE.∴∠ODE=90°,即∠2 ∠ODC=90°,∵OC=OD,∴∠C=∠ODC.∴∠2 ∠C=90°.∵OC⊥OB,∴∠C ∠3=90°.∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.
(2)∵OF:OB=1:3,⊙O的半径为3,∴OF=1.∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,设DE=x,则EF=x,OE=1+x,所以
,解得x =4.∴DE=4,OE=5.
∵AG为⊙O的切线,∴AG⊥AE.∴∠GAE=90°.∴∠ODE=∠GAE,∵∠OED=∠GEA,∴Rt△EOD∽Rt△EGA.
解得AG=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把边长为3的正方形
绕点A顺时针旋转45°得到正方形
,边
与
交于点O,则四边形
的周长是( )
A. 6B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明每天早上要在7:50之前赶到距家900米的学校上学.小明以60米/分的速度出发10分后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以160米/分的速度去追小明,爸爸能否在小明进学校前追上他?若能,请说明理由,若不能,请计算,爸爸的速度至少为多少时才能赶在小明进学校前追上他?
-
科目: 来源: 题型:
查看答案和解析>>【题目】用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板:

(1)观察图形,填写下表:
图形
(1)
(2)
(3)
……
黑色瓷砖的块数
4
……
黑白两种瓷砖的总块数
15
……
(2)依上推测,第n个图形中黑色瓷砖的块数为__________________;黑白两种瓷砖的总块数为__________________(都用含n的代数式表示)
(3)白色瓷砖的块数可能比黑色瓷砖的块数多2014块吗?若能,求出是第几个图形;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,二次函数
的图象与
轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于
轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由; -
科目: 来源: 题型:
查看答案和解析>>【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
相关试题