【题目】在平面直角坐标系中,A(-2,0) ,B(-1,2) ,C(1,0) ,连接 AB,点 D 为 AB 的中点,连接 OB 交 CD于点 E,则四边形 DAOE 的面积为( )
A. 1. B.
C.
D. ![]()
参考答案:
【答案】C
【解析】根据中点公式求出点D的坐标,然后用待定系数法求出直线OB和直线CD的解析式,将两个解析式联立,求出点E的坐标,然后根据S四边形DAOE=S△DAC-S△EOC计算即可.
如图,
![]()
设OB的解析式为y=kx.
将B(-1,2)的坐标代入
得2=-k,解得k=-2.
∴OB的解析式为y=-2x.
∵D为AB的中点,设D(m,n).
∵A(-2,0) ,B(-1,2) ,
∴m=
,n=
.
∴D (
,1),
设CD的解析式为y=ax+b
将C(1,0),D (
,1)的坐标分别代入
得
,解得
,
∴CD的解析式为
.
由
,得
,
∴
,
∵AC=1-(-2)=3,点D (
,1)到AC轴的距离为1.
∴
,
∵OC=1,点
到OC的距离为
.
∴
,
∴S四边形DAOE=S△DAC-S△EOC=
.
即四边形DAOE的面积为
.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,AD=BC=6,AB=CD=4.点P从点A出发,以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动.设运动时间为t秒.
(1)当t= 时,点P到达点C;当t= 时,点P回到点A;
(2)△ABP面积取最大值时t的取值范围;(3)当△ABP的面积为3时,求t的值;
(4)若点P出发时,点Q从点A出发,以每秒2个单位的速度沿A→D→C→B→A的方向运动,回到点A停止运动.请问:P 、Q何时在长方形ABCD的边上相距1个单位长度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示是一个正方体的表面展开图,请回答下列问题:
(1)与面B,C相对的面分别是 ;
(2)若A=a3+
a2b+3,B=﹣
a2b+a3,C=a3﹣1,D=﹣
(a2b+15),且相对两个面所表示的代数式的和都相等,求E,F分别代表的代数式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A第,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1)A、B两地之间的距离: km;
(2)甲的速度为 km/h;乙的速度为30km/h;
(3)点M的坐标为 ;
(4)求:甲离B地的距离y(km)与行驶时间x(h)之间的函数关系式(不必写出自变量的取值范围).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则A2017的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD∥EF,∠1=75,∠2=45,点 G为∠BED 内一点,且 EG把∠BED分成 1 ∶ 2 两部分,则∠GEF 的度数为 ___.

相关试题