【题目】如图,在平行四边形ABCD中,∠ABC的平分线BE交CD于点E,∠ADC的平分线DF交AB于点F.
(1)若AD=4,AB=6,求BF的长.
(2)求证:四边形DEBF是平行四边形.
![]()
参考答案:
【答案】(1)2;(2)证明见解析.
【解析】
(1)根据平行四边形的性质和角平分线的定义即可得到结论;
(2)由在ABCD中,BE是∠ABC的平分线,DF是∠ADC的平分线,易证得∠ADF=∠CBE,利用ASA可证△ADF≌△CBE,继而证得DE=FB,根据DE∥BF,则可证得四边形DEBF是平行四边形,
解:(1)在平行四边形ABCD中,
∵AB∥CD,
∴∠AFD=∠CDF,
∵∠ADC的平分线DF交AB于点F.
∴∠ADF=∠CDF,
∴∠ADF=∠AFD,
∴AF=AD=4,
∵AB=6,
∴
;
(2)∵四边形ABCD是平行四边形,
∴AD=CB,AB=CD,∠A=∠C,∠ADC=∠ABC.
又∵BE是∠ABC的平分线,DF是∠ADC的平分线
∴∠ADF=
∠ADC,∠CBE=
∠ABC,
∴∠ADF=∠CBE,
∴△ADF≌△CBE(ASA).
∴AF=CE.
∴AB﹣AF=CD﹣CE
即DE=FB.
又∵DE∥BF,
∴四边形DEBF是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】依据我市出租汽车运价与燃料(天然气)价格联动机制,经市政府同意,从2016年11月1日起,市区出租汽车每乘次起步价降低0.5元(不含非用天然气出租车).即排气量1.8L(含1.8L)以下车型由现行起步价3公里9元降低至3公里8.5元;超过3公里每公里运价为2.0元/公里;空驶补贴费为单程载客12公里以上的部分,每公里加收公里运价的50%.
(1)请写出新运价标准下乘车费用y元与乘车距离x公里之间的函数关系式;
(2)小明从家乘车去学校花费了10元,求他家与学校之间的距离是多少公里?
-
科目: 来源: 题型:
查看答案和解析>>【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:

(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已如两个全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在的直线)于M、N.
(1)如图1,当线段EF经过△ABC的顶点时,点N与点C重合,线段DE交AC于M,已知AC=BC=5,则MC= ;
(2)如果2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;
(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,则(2)中AM,MN,CN之间的等量关系还成立吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,
=
=
=n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ= , n= . 
相关试题