【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
![]()
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
参考答案:
【答案】解:(1)50; 32。
(2)∵
,
∴这组数据的平均数为:16。
∵在这组样本数据中,10出现次数最多为16次,
∴这组数据的众数为:10。
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:
,
(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,
∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608(人。
∴该校本次活动捐款金额为10元的学生约有608人。
【解析】
试题(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);
根据扇形统计图得出m的值:
。
(2)利用平均数、中位数、众数的定义分别求出即可。
(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE.
(1)若∠COF=40°,求∠BOE的度数.
(2)若∠COF=α(0°<α<90°),则∠BOE=______(用含α的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标: ;
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围: (用含n的代数式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,E是圆内的两条弦AB、CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.连接AG、DG.

求证:
(1)△DFE∽△EFA
(2)EF=FG -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:抛物线
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线ι⊥x轴于点F,交抛物线
于点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE取最大值时,把抛物线
向右平移得到抛物线
,抛物线
与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线
应向右平移几个单位长度可得到抛物线
?
相关试题