【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).![]()
(1)在图中作出
关于
轴对称的
.
(2)写出点
的坐标(直接写答案).
A1_____________,B1______________,C1______________
参考答案:
【答案】(1)如图所示:
![]()
(2)A1(1,-2),B1(3,-1),C1(-2,1)
【解析】
(1)利用关于y轴对称点的性质得出对应点位置画出图形即可;(2)利用所画图形得出各点坐标;(3)利用△ABC所在矩形面积减去周围三角形面积进而求出即可.
本题解析:
(1)如图所示:
,即为所求;
![]()
(2)
(1,2),
(3,1),
(2,1);
故答案为:(1,2),(3,1),(2,1);
(3)
的面积为:3×5
×2×1
×3×3
×2×5=4.5.故答案为:4.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个自然数的立方,可以分裂成若干个连续奇数的和。例如:
和
分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即
=3+5;
=7+9+11;
=13+15+17+19;…;若
也按照此规律来进行“分裂”,则
“分裂”出的奇数中,最大的奇数是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E,当P点在线段AD上运动时,∠E与∠B,∠ACB的数量关系为________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BC边上的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC于点G.
求证:(1)BF=CG;
(2)AB+AC=2AF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道1+2+3+…+
=
,则1+2+3+…+10= ___________ .[问题提出] 那么
的结果等于多少呢?[阅读理解] 在图1所示的三角形数阵中,第1行圆圈中的数为1,即12 ;第2行两个圆圈中数的和为2+2,即22;......;第n行n个圆圈中数的和为n+n+
n即 n2;这样,该三角形数阵中共有____ 个圆圈,所有圆圈中数的和可表示为_________________ . 
图1
[规律探究] 将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n)发现每个位置上三个圆圈中的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:
3(
)=_________________.因此,
=__________. 
图2
[问题解决]
(1).根据以上规律可得
__________________.(2).试计算
,请写出计算步骤. -
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)若一抛物线的顶点在原点,且经过点A(﹣2,8),求抛物线的解析式;
(2)如图,抛物线y=ax2+bx的顶点为A(﹣3,﹣3),且经过P(t,0)(t≠0),求该抛物线的解析式;
(3)在(2)的条件下,回答下列问题(直接写出答案) ①y的最小值为;
②点P的坐标为;
③当x>﹣3时,y随x的增大而 .
相关试题