【题目】如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=
,且OC=4,求BD的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)![]()
【解析】试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
![]()
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵
,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
![]()
∵在Rt△AOC中,tan∠BAD=tan∠CAO=
,且OC=4,
∴AC=6,则BC=6.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OCPC,解得PC=9,
∴OP=PC+OC=13.在Rt△PBC中,由勾股定理,得PB=
,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=
BE,OC∥BE,∴BE=2OC=8.
∵BE∥OP,∴△DBE∽△DPO,
∴
,即
,解得BD=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为( )

A. 2
B. 2
C. 2
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时15
千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某自行车厂决定生产一批共享单车投入市场.该厂原计划一周生产1400辆共享单车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):

⑴根据记录可知前三天共生产 辆;
⑵产量最多的一天比产量最少的一天多生产 辆;
⑶该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC

(1)求证:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为( )
A. 65°B. 60°C. 55°D. 45°
相关试题