【题目】如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时15
千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.
(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是多少?
![]()
参考答案:
【答案】(1)2;(2)15+15
.
【解析】
试题分析:(1)根据方向角可以得到∠BCA=45°,∠B=30°,过A作AD⊥BC于点D,在Rt△ACD中,根据三角函数就可求得AD的长,再在直角△ABD中,根据三角函数即可求得AB的长,就可求得时间;(2)求出BC的长,根据(1)中的结果求得时间,即可求得速度.
试题解析:(1)如图,过A作AD⊥BC于点D.作CG∥AE交AD于点G.
∵乙船沿东北方向前进,
∴∠HAB=45°,
∵∠EAC=30°,
∴∠CAH=90°-30°=60°
∴∠CAB=60°+45°=105°.
∵CG∥EA,
∴∠GCA=∠EAC=30°.
∵∠FCD=75°,
∴∠BCG=15°,∠BCA=15°+30°=45°,
∴∠B=180°-∠BCA-∠CAB=30°.
在直角△ACD中,∠ACD=45°,AC=2×15
=30
.
AD=ACsin45°=30
×
=30千米.
CD=ACcos45°=30千米.
在Rt△ABD中,∠B=30°.
则AB=2AD=60千米.
则甲船从C处追赶上乙船的时间是:60÷15-2=2小时;
(2)BC=CD+BD=30+30
千米.
则甲船追赶乙船的速度是每小时(30+30
)÷2=15+15
千米/小时.
答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时15+15
千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知:|a|=3,b2=4,ab<0,求a﹣b的值.
(2)已知关于x的方程
=
与方程
=3y﹣2的解互为倒数,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为( )

A. 2
B. 2
C. 2
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某自行车厂决定生产一批共享单车投入市场.该厂原计划一周生产1400辆共享单车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):

⑴根据记录可知前三天共生产 辆;
⑵产量最多的一天比产量最少的一天多生产 辆;
⑶该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=
,且OC=4,求BD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC

(1)求证:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
相关试题