【题目】感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为
![]()
参考答案:
【答案】探究:证明见详解;应用:![]()
【解析】
探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;
应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=
,由三角形的面积公式即可得到结论.
解:探究:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°
又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
应用:连接DF,
![]()
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF=
,
∵∠DCB=90°,CD=1,
∴CF=
,
∴四边形EFCD的面积=S△DEF+S△CDF=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某自行车厂决定生产一批共享单车投入市场.该厂原计划一周生产1400辆共享单车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):

⑴根据记录可知前三天共生产 辆;
⑵产量最多的一天比产量最少的一天多生产 辆;
⑶该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=
,且OC=4,求BD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC

(1)求证:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为( )
A. 65°B. 60°C. 55°D. 45°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,函数
的图象经过点A(1,4)和点B.过点A作AC⊥x轴,垂足为点C,过点B作BD⊥y轴,垂足为点D,连结AB、BC、DC、DA.点B的横坐标为a(a>1)
(1)求k的值
(2)若△ABD的面积为4;
①求点B的坐标,
②在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
①求证:BE′+BF=2,
②求出四边形OE′BF的面积.

相关试题