【题目】如图,在平行四边形ABCD中,DB=DA,∠ADB的平分线交AB于点F,交CB的延长线于点E,连接AE.
(1)求证:四边形AEBD是菱形;
(2)若DC=
,EF:BF=3,求菱形AEBD的面积.
![]()
参考答案:
【答案】(1)见解析;(2)15.
【解析】
(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据DB=DA可得结论;
(2)先求出BF的长,再求出EF的长即可解决问题.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥CE,
∴∠DAF=∠EBF,
∵∠AFD=∠EFB,AF=FB,
∴△AFD≌△BFE,
∴AD=EB,∵AD∥EB,
∴四边形AEBD是平行四边形,
∵BD=AD,
∴四边形AEBD是菱形.
(2)∵四边形ABCD是平行四边形,
∴CD=AB=
,
∵四边形AEBD是菱形,
∴AB⊥DE,AF=FB=
,
∵EF:BF=3
∴EF=
∴DE=2EF=![]()
∴S菱形AEBD=
ABDE=
×
×3
=15.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴、y轴建立平面直角坐标系,F是BC边上的点,过F点的反比例函数y=
(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点D处,则点F的坐标为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为创建足球特色学校,营造足球文化氛围,某学校随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分—10分,B级:7分—7.9分,C级:6分—6.9分,D级:1分—5.9分)根据所给信息,解答以下问题:

(1)样本容量为 ,C对应的扇形的圆心角是____度,补全条形统计图;
(2)所抽取学生的足球运球测试成绩的中位数会落在____等级;
(3)该校八年级有300名学生,请估计足球运球测试成绩达到
级的学生有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:

(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图;
(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线
与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC,点C为直角顶点,连接OC.(1)直接写出
= ;(2)请你过点C作CE⊥y轴于E点,试探究OB+OA与CE的数量关系,并证明你的结论;
(3)若点M为AB的中点,点N为OC的中点,求MN的值;
(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线
于点P,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题:如何快速计算1+2+3+…+n 的值呢?
(1)探究:令s=1+2+3+…+n①,则s=n+n-1+…+2+1②
①+②得2s=(n+1)(n+1)+…+(n+1)=n
(n+1)因此
_________________.(2)应用:
①计算:
________;②如图1,一串连续的整数1,2,3,4,…,自上往下排列,最上面一行有一个数,以下各行均比上一行多一个数字,若共有15行数字,则最底下一行最左边的数是_______;

③如图2,一串连续的整数-25,-24,-23,…,按图1方式排列,共有14行数字,求图2中所有数字的和.
相关试题