【题目】如图,△ABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=12.
![]()
(1)证明:△BCD是直角三角形.
(2)求△ABC的面积.
参考答案:
【答案】(1)证明见解析;(2)△ABC的面积为75.
【解析】
(1)由勾股定理逆定理可以证明△BCD是直角三角形;(2)要求△BCD的面积,已知BD的长度,即要求AC的长度,已知CD的长度,即要求AD的长度,设AD=x,根据勾股定理列方程求解.
(1)证明:∵ CD=9,BD=12,
∴ CD2+BD2=92+122=225,
∵ BC=15,∴ BC2=225,
∴ CD2+BD2=BC2,
∴ △BCD是直角三角形,且∠BDC=90°;
(2)设AD=x,则AC=x+9,
∵ AB=AC,∴ AB=x+9,
∵ ∠BDC=90°,∴ ∠ADB=90°,
∴ AB2=AD2+BD2,
∴
,
解得:x=
,
∴AC=
+9=
,
∴S△ABC=
AC×BD=
×
×12=75,
∴ △ABC的面积为75.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.

(1)求证:四边形OCED为菱形;
(2)连接AE、BE,AE与BE相等吗?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D,这些球除了所标字母外都相同,另外,有一面白色、另一面黑色、大小相同的4张正方形卡片,每张卡片上面的字母相同,分别标有A、B、C、D.最初,摆成图2的样子,A、D是黑色,B、C是白色. 操作:①从袋中任意取一个球;
②将与取出球所标字母相同的卡片翻过来;
③将取出的球放回袋中
再次操作后,观察卡片的颜色.
(如:第一次取出球A,第二次取出球B,此时卡片的颜色变
)
(1)求四张卡片变成相同颜色的概率;
(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为_________.(π取3)

-
科目: 来源: 题型:
查看答案和解析>>【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:
购买商品A的数量(个)
购买商品B的数量(个)
购买总费用(元)
第一次购物
6
5
1140
第二次购物
3
7
1110
第三次购物
9
8
1062
(1)小林以折扣价购买商品A、B是第次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.

相关试题