【题目】如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是( ) ![]()
A.60°
B.72°
C.108°
D.120°
参考答案:
【答案】A
【解析】解:∵六边形ABCDEF是正六边形, ∴∠AFE=
=120°,
∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,
∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,
∴∠EFE′是旋转角,
∴所转过的度数是60°.
故选A.
【考点精析】本题主要考查了正多边形和圆和旋转的性质的相关知识点,需要掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=ADAB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=
x2+bx+c经过点B,且对称轴是直线x=﹣
.
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣
,
),对称轴是直线x=﹣
.) -
科目: 来源: 题型:
查看答案和解析>>【题目】先化简再求值
(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3
(2)2a2﹣[
(ab﹣4a2)+8ab]﹣
ab;其中a=1,b=
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为
(即cosC=
),则AC边上的中线长是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B、C、D分别在正方形网格的格点上,其中A点的坐标为(﹣1,5),B点的坐标为(3,3),小明发现,线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.

相关试题