【题目】如图1,在平面直角坐标系中,A(a,0),B(0,2
)
(1)点(k+1,2k﹣5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;
(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;
(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E点,连接BE.
①求证:EB平分∠CED;
②M点是y轴上一动点,求AM+CM最小时点M的坐标.
![]()
参考答案:
【答案】(1)A(2,0),S△AOB=2
;(2)P点坐标为(2+2
,2)或(2
,2
+2);(3)①详见解析;②M(0,
).
【解析】
(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;
(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;
(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BN,最后用角平分线的判定定理即可得出结论;
②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A'C的解析式,即可得出结论.
解:(1)∵点(k+1,2k﹣5)关于x轴的对称点在第一象限,
∴点(k+1,2k﹣5)在第四象限,
∴k+1>0,2k﹣5<0,
∴﹣1<k<2.5,
∵a为实数k的范围内的最大整数,
∴a=2,
∵A(a,0),
∴A(2,0),
∴OA=2,
∵B(0,2
),
∴OB=2
,
∴S△AOB=
OAOB=
×
=2
;
(2)如图1,
![]()
∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,
∴①当∠BAP=90°时,AB=AP,
过点P作PF⊥OA于F,
∴∠PAF+∠APF=90°,
∵∠BAP=90°,
∴∠PAF+∠BAO=90°,
∴∠APF=∠BAO,
∵AB=AP,
∴△OAB≌△FPA(AAS),
∴PF=OA=2,AF=OB=2
,
∴OF=OA+AF=2+2
,
∴P(
,2),
②当∠ABP=90°时,同①的方法得,P'(2
,2
+2),
即:P点坐标为(2+2
,2)或(2
,2
+2);
(3)①如图2,
![]()
∵△OBD和△ABC都是等边三角形,
∴BD=OB,AB=BC,∠OBD=∠ABC=60°,
∴∠ABD=∠CBO,
在△ABD和△CBO中,
,
∴△ABD≌△CBO(SAS),
∴S△ABD=S△CBO,AD=OC,
过点B作BM⊥AD于M,BN⊥OC于N,
∴BM=BN,
∵BM⊥AD,BN⊥OC,
∴BE是∠CED的角平分线;
②如图3,
作点A关于y轴的对称点A',
∵A(2,0),
∴A'(﹣2,0),
连接A'C交y轴于M,
过点C作CH⊥OA于H,
在Rt△AOB中,OA=2,OB=2
,
∴AB=4,tan∠OAB=
=
=
,
∴∠OAB=60°,
∵△ABC是等边三角形,
∴AC=AB=4,∠BAC=60°,
∴∠CAH=60°,
在Rt△ACH中,∠ACH=90°﹣∠CAH=30°,
∴AH=2,CH=2
,
∴OH=OA+AH=4,
∴点C(4,2
),
∵A'(﹣2,0),
∴直线A'C的解析式为y=
x+
,
∴M(0,
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.
(1)求证:△ABC≌△ADE;
(2)求证:CA平分∠BCD;
(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.
甲型
乙型
价格(元/台)
a
b
有效半径(米/台)
150
100
(1)求a、b的值;
(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.
(1)如图1,若AE、CD为△ABC的角平分线:
①求∠AFD的度数;
②若AD=3,CE=2,求AC的长;
(2)如图2,若∠EAC=∠DCA=30°,求证:AD=CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.

(1)请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 ________个正方体只有一个面是黄色,有 __________个正方体只有两个面是黄色,有 ________个正方体只有三个面是黄色.
(3)若现在你手头还有一些相同的小正方体,如果保持图的几何体的俯视图和左视图不变,最多可以再添加几个小正方体?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中二次函数解析式为
,则下列命题中正确的有(填序号).
①
;②
;③
;④
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
课外阅读时间(单位:小时)
频数(人数)
频率
0﹤t≤2
2
0.04
2﹤t≤4
3
0.06
4﹤t≤6
15
0.30
6﹤t≤8
a
0.50
t﹥8
5
b

请根据图表信息回答下列问题:
(1)频数分布表中的a=b=;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
相关试题