【题目】在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.
(1)如图1,若AE、CD为△ABC的角平分线:
①求∠AFD的度数;
②若AD=3,CE=2,求AC的长;
(2)如图2,若∠EAC=∠DCA=30°,求证:AD=CE.
![]()
参考答案:
【答案】(1)①60°;②5;(2)详见解析.
【解析】
(1)①根据角平分线的定义、三角形内角和定理计算;
②在AC上截取AG=AD=3,连接FG,证明△ADF≌△AGF、△CGF≌△CEF,根据全等三角形的性质解答;
(2)在AE上截取FH=FD,连接CH,证明△ADF≌△CHF,根据全等三角形的性质、三角形的外角的性质解答.
解:(1)①∵AE、CD分别为△ABC的角平分线,
∴∠FAC=
∠BAC,∠FCA=
∠BCA,
∵∠B=60°
∴∠BAC+∠BCA=120°,
∴∠AFC=180﹣∠FAC﹣∠FCA=180﹣
(∠BAC+∠BCA)=120°
∴∠AFD=180°-∠AFC=60°;
②在AC上截取AG=AD=3,连接FG,
![]()
∵AE、CD分别为△ABC的角平分线,
∴∠FAC=∠FAD,∠FCA=∠FCE,
∵∠AFC=120°,
∴∠AFD=∠CFE=60°,
在△ADF和△AGF中,
∵
,
∴△ADF≌△AGF(SAS),
∴∠AFD=∠AFG=60°,
∴∠GFC=∠CFE=60°,
在△CGF和△CEF中,
∵
,
∴△CGF≌△CEF(ASA),
∴CG=CE=2,
∴AC=5;
(2)在AE上截取FH=FD,连接CH,
∵∠FAC=∠FCA=30°,
∴FA=FC,
在△ADF和△CHF中,
∵
,
∴△ADF≌△CHF(SAS),
∴AD=CH,∠DAF=∠HCF,
∵∠CEH=∠B+∠DAF=60°+∠DAF,
∠CHE=∠HAC+∠HCA=60°+∠HCF,
∴∠CEH=∠CHE,
∴CH=CE,
∴AD=CE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.
(1)求证:△ABC≌△ADE;
(2)求证:CA平分∠BCD;
(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.
甲型
乙型
价格(元/台)
a
b
有效半径(米/台)
150
100
(1)求a、b的值;
(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,A(a,0),B(0,2
)(1)点(k+1,2k﹣5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;
(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;
(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E点,连接BE.
①求证:EB平分∠CED;
②M点是y轴上一动点,求AM+CM最小时点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.

(1)请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 ________个正方体只有一个面是黄色,有 __________个正方体只有两个面是黄色,有 ________个正方体只有三个面是黄色.
(3)若现在你手头还有一些相同的小正方体,如果保持图的几何体的俯视图和左视图不变,最多可以再添加几个小正方体?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中二次函数解析式为
,则下列命题中正确的有(填序号).
①
;②
;③
;④
.
相关试题