【题目】如图(1),四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N为垂足. ![]()
(1)求证:AM=CN;
(2)如图(2),在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满足什么条件时,四边形AECF是矩形?并加以证明.
参考答案:
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠ADM=∠CBN.
∵AM⊥BD,CN⊥BD,
∴∠AMD=∠CNB=90°,
在△AMD和△CNB中
,
∴△AMD≌△CNB.
∴AM=CN.
(2)猜想:当EF=AC时,四边形AECF是矩形.
证明:由(1)得△AMD≌△CNB,
∴DM=BN.
∵BE=DF,
∴DM+DF=BN+BE,即MF=NE.
在△AMF和△CNE中 ![]()
∴△AMF≌△CNE.
∴AF=CE,∠AFE=∠CEF.
∴AF∥CE且AF=CE.
即四边形AECF是平行四边形.
又EF=AC,
∴四边形AMCN是矩形
【解析】(1)利用平行四边形的性质证得△AMD≌△CNB,从而根据全等三角形对应边相等证得结论即可;(2)利用对角线相等的平行四边形是矩形证得结论即可.
【考点精析】通过灵活运用平行四边形的性质和矩形的判定方法,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为丰富学生的校园生活,某校举行“与爱同行”朗诵比赛,赛后整理参赛同学的成绩,绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.
组别
成绩x(分)
频数(人数)
A
8.0≤x<8.5
a
B
8.5≤x<9.0
8
C
9.0≤x<9.5
15
D
9.5≤x<10
3

(1)图中a= , 这次比赛成绩的众数落在组;
(2)请补全频数分布直方图;
(3)学校决定选派本次比赛成绩最好的3人参加全市中学生朗诵比赛,并为参赛选手准备了2件白色、1件蓝色上衣和黑色、蓝色、白色的裤子各1条,小军先选,他从中随机选取一件上衣和一条裤子搭配成一套衣服,请用画树状图法或列表法求出上衣和裤子搭配成不同颜色的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).

(1)求此一次函数的表达式;
(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.

解:∵AB∥CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
即∠ =∠ ( )
∴∠3=∠
∴AD∥BE( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与x轴交于点
,直线
与x轴、y轴分别交于B、C两点,并与直线
相交于点D,若
.
求点D的坐标;
求出四边形AOCD的面积;
若E为x轴上一点,且
为等腰三角形,写出点E的坐标
直接写出答案
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?
相关试题