【题目】如图,边长为1的正方形ABCD被两条与边平行的线段EF,GH分割成四个小长方形,EF与GH交于点P,设BF长为a,BG长为b,△GBF的周长为m,
![]()
(1)①用含a,b,m的式子表示GF的长为 ;
②用含a,b的式子表示长方形EPHD的面积为 ;
(2)已知直角三角形两直角边的平方和等于斜边的平方,
例如在图1,△ABC中,∠ABC=900,则
,
请用上述知识解决下列问题:
①写出a,b,m满足的等式 ;
②若m=1,求长方形EPHD的面积;
③当m满足什么条件时,长方形EPHD的面积是一个常数?
![]()
参考答案:
【答案】(1)①
;②
;(2)①
;②
;③m=1
【解析】
(1)①直接根据三角形的周长公式即可;
②根据BF长为a,BG长为b,表示出EP,PH的长,根据求长方形EPHD的面积;
(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a,b,m之间的关系式;
②根据线段之间的关系利用勾股定理求出长方形EPHD的面积的值;
③结合①的结论和②的作法即可求解.
(1)①∵BF长为a,BG长为b,△GBF的周长为m,
∴
,
故答案为:
;
②∵正方形ABCD的边长为1 ,
∴AB=BC=1,
∵BF长为a,BG长为b,
∴AG=1-b,FC=1-a,
∴EP=AG=1-b,PH=FC=1-a,
∴长方形EPHD的面积为:
,
故答案为:
;
(2)①△ABC中,∠ABC=90°,则
,
∴在△GBF中,
,
∴
,
化简得,![]()
故答案为:
;
②∵BF=a,GB=b,
∴FC=1-a,AG=1-b,
在Rt△GBF中,
,
∵Rt△GBF的周长为1,
∴![]()
即
,
即
,
整理得![]()
∴
,
∴矩形EPHD的面积![]()
![]()
![]()
.
③由①得:
,
∴
.
∴矩形EPHD的面积![]()
![]()
![]()
![]()
,
∴要使长方形EPHD的面积是一个常数,只有m=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,点E是边CD的中点,连接BE并延长,交AD延长线于点F,连接BD、CF.
(1)求证:△CEB≌△DEF;
(2)若AB=BF,试判断四边形BCFD的形状,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】实验中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买100个A型放大镜和150个B型放大镜需用1500元;若购买120个A型放大镜和160个B型放大镜需用1720元.
(1)求每个A型放大镜和每个B型放大镜各多少元;
(2)学校决定购买A型放大镜和B型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A型放大镜?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.
(1)求证:DE⊥DM;
(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.

-
科目: 来源: 题型:
查看答案和解析>>【题目】重庆八中的老师工作很忙,但初一年级很多数学老师仍然坚持锻炼身体,比如张老师就经常坚持饭后走一走.某天晚饭后他从学校慢步到附近的中央公园,在公园里休息了一会后,因学校有事,快步赶回学校.下面能反映当天张老师离学校的距离y与时间x的关系的大致图象是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的
满足
,求:①
的值;②
的值. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )
①m是无理数;②m是方程m2 -12=0的解;③m满足不等式组
,④m是12的算术平方根.A. ①② B. ①③ C. ③ D. ①②④
相关试题