【题目】A、B两地相距120km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即按原速返回.如图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)求甲车返回时(即CD段)
与
之间的函数解析式;
(2)若当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(3)直接写出当两车相距20km时,甲车行驶的时间.
![]()
参考答案:
【答案】(1)
(2)
(3)![]()
【解析】
(1)根据题意和函数图象中的数据可以求得甲车返回时(即CD段)y与x之间的函数解析式;
(2)根据题意和函数图象中的数据可以求得当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(3)根据题意可以列出相应的方程,求出当两车相距20km时,甲车行驶的时间.
(1)由题意可得,点C的坐标为
,点D的坐标为![]()
设甲车返回时(即CD段)y与x之间的函数解析式为
,代入点C、D可得
![]()
解得![]()
即甲车返回时(即CD段)y与x之间的函数解析式为
;
(2)将
代入
,得![]()
∴点F的坐标为![]()
∴乙车的速度为
,乙车从A地到B地用的时间为![]()
设一车行驶过程中y与x的函数解析式为![]()
代入点F可得
![]()
解得![]()
即乙车的速度是
,乙车行驶过程中y与x之间的函数解析式为
;
(3)设OC段对应的函数解析式为
,代入点C可得
![]()
解![]()
即OC段对应的函数解析式为![]()
![]()
解得![]()
![]()
解得![]()
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm, 整点P从原点0出发,速度为1cm/s, 且整点P做向上或向右运动(如图1所示.运动时间(s)与整点(个)的关系如下表:
整点P从原点出发的时间(s)
可以得到整点P的坐标
可以得到整点P的个数
1
(0,1)(1,0)
2
2
(0,2)(1,1)(2,0)
3
3
(0,3)(1,2)(2,1)(3,0)
4
.
·
.
根据上表中的规律,回答下列问题:
(1)当整点P从点0出发4s时,可以得到的整点的个数为______个.
(2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.
(3)当整点P从点0出发______s时,可以得到整点(16,4)的位置.

-
科目: 来源: 题型:
查看答案和解析>>【题目】2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下
收集数据
甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述数据绘制统计表如下,请补全下表:
班级
平均数
众数
中位数
方差
甲
4
3
乙
6
3.2
分析数据、推断结论
(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;
(2)你认为哪个班同学寒假读书情况更好,写出理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.
(1)当t=3时,解这个方程;
(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在
外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=5.求GE的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求证:DE=DF.

相关试题