【题目】如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )
![]()
A.45°B.60°C.70°D.90°
参考答案:
【答案】D
【解析】
先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算.
∵以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴∠AB′B=
(180°-120°)=30°,
∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB
,BC
,连结对角线AC,点O为AC的中点,点E为线段BC上的一个动点,连结OE,将△AOE沿OE翻折得到△FOE,EF与AC交于点G,若△EOG的面积等于△ACE的面积的
,则BE=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=BC,以AB为直径的圆O交AC于点D,过点D作DE⊥BC,垂足为E,连接OE.
(1)求证:DE是⊙O的切线;
(2)若CD=
,∠ACB=30°,求OE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为迎接五一节,重百超市计划销售枇杷和樱桃两种水果共5000千克,若枇杷的数量是樱桃的2倍少1000千克.
(1)超市计划销售枇杷多少千克?
(2)若超市从某一果园直接进货,果园共30名员工负责采摘这两种水果,每人每天能够采摘30千克枇杷或10千克樱桃,应分别安排多少人采摘枇杷和樱桃,才能确保采摘两种水果所用的时间相同?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分线CF于点F.

(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否一定成立?说出你的理由;
②在如图2所示的直角坐标系中抛物线y=ax2+x+c经过A、D两点,当点E滑动到某处时,点F恰好落在此抛物线上,求此时点F的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是_________个小正方形,第n 个图形是___________个小正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将等腰直角△ABC沿BC方向平移得到△A'B'C',若
,则BB'=________.
相关试题