【题目】一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算,若租两车合运,10天可以完成任务,若甲车的效率是乙车效率的2倍.
甲、乙两车单独完成任务分别需要多少天?
已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元
试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.
参考答案:
【答案】(1)甲车单独完成需要15天,乙车单独完成需要30天;(2)单独租甲车租金最少,见解析
【解析】
设甲车单独完成任务需要x天,则乙单独完成需要2x天,根据题意所述等量关系可得出方程,解出即可;
结合
的结论,分别计算出三种方案各自所需的费用,然后比较即可.
解:
设甲车单独完成任务需要x天,则乙单独完成需要2x天,根据题意可得:
,
解得:
,
经检验得,x是原方程的解,则
,
即甲车单独完成需要15天,乙车单独完成需要30天;
设甲车每天租金为a元,乙车每天租金为b元,
则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:
,
解得:
,
租甲乙两车需要费用为:65000元;
单独租甲车的费用为:
元;
单独租乙车需要的费用为:
元;
综上可得,单独租甲车租金最少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB是⊙O的直径,C是⊙O上一点,过C点的切线与AB的延长线交于点D,CE∥AB交⊙O于点E,连接AC、BC、AE.
(1)求证:①∠DCB=∠CAB;②CDCE=CBCA;
(2)作CG⊥AB于点G.若tan∠CAB=
(k>1),求
的值(用含k的式子表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为


A.
B. 10cmC. 20cmD. 12cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一面靠墙的空地上,用长为24米的篱笆围成中间隔有二道篱笆的长方形花圃,从设计的美观角度出发,墙的最小可用长度为4米,墙的最大可用长度为14米.
(1)若所围成的花圃的面积为32平方米,求花圃的宽AB的长度;
(2)当AB的长为 时,所围成的花圃面积最大,最大值为 米2;当AB的长为 时,所围成的花圃面积最小,最小值为 米2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.
(1)求证:四边形AECF是菱形;
(2)若AD=3,AE=5,则求菱形AECF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b和y=bx+a的图象可能是( )
A.
B.
C.
D. 
相关试题