【题目】如图1,在△ABC中,AB=AC,以AB为直角边作等腰直角三角形ABD,与BC边交于点E,
(1)若∠ACE=18°,则∠ECD=
(2)探索:∠ACE与∠ACD有怎样的数量关系?猜想并证明.
(3)如图2,作△ABC的高AF并延长,交BD于点G,交CD延长线于点H,求证:CH2+DH2=2AD2.
![]()
参考答案:
【答案】(1)45°;(2)∠ACE=∠ACD﹣45°,理由见解析;(2)见解析
【解析】
(1)由等腰三角形的性质得出∠ABC=∠ACE=18°,得出∠BAC=180°﹣18°﹣18°=144°,由等腰直角三角形的性质得出∠BAD=90°,AB=AD,求出∠DAC=54°,证出AC=AD,由等腰三角形的性质和三角形内角和定理得出∠ACD=
(180°﹣54°)=63°,即可得出答案;
(2)由(1)得出∠BAC=180°﹣2∠ACE,得出∠DAC=90°﹣2∠ACE,由等腰三角形的性质和三角形内角和定理即可得出结论;
(3)连接BH,由(2)得出∠ECD=45°,由等腰三角形的性质得出BF=CF,由线段垂直平分线的性质得出BH=CH,由等腰三角形的性质得出∠HBC=∠BCD=45°,证出∠BHC=90°,由勾股定理得出BH2+DH2=BD2.进而得出结论.
(1)∵AB=AC,
∴∠ABC=∠ACE=18°,
∴∠BAC=180°﹣18°﹣18°=144°,
∵以AB为直角边作等腰直角三角形ABD,
∴∠BAD=90°,AB=AD,
∴∠DAC=144°﹣90°=54°,
∵AB=AC,
∴AC=AD,
∴∠ACD=
(180°﹣54°)=63°,
∴∠DCE=∠ACD﹣∠ACE=63°﹣18°=45°;
故答案为:45°;
(2)∠ACE=∠ACD﹣45°;理由如下:
由(1)得:∠BAC=180°﹣2∠ACE,
∴∠DAC=∠BAC﹣90°=90°﹣2∠ACE,
∵AC=AD,
∴∠ACD=
(180°﹣∠DAC)=
[180°﹣(90°﹣2∠ACE)]=45°+∠ACE,
∴∠ACE=∠ACD﹣45°;
(3)连接BH,如图2所示:
![]()
由(2)得:∠ECD=45°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∴BH=CH,
∴∠HBC=∠BCD=45°,
∴∠BHC=90°,
∴BH2+DH2=BD2.
∵△ABD是等腰直角三角形,
∴BD2=2AD2,
∴CH2+DH2=2AD2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC边上一点.
(1)如图1,若E是BC的中点,∠AED=60°,求证:CE=CD;
(2)如图2,若∠EAD=60°,求证:△AED是等边三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数的图象的对称轴是直线
,它与
轴交于
、
两点,与
轴交与点
,点
、
的坐标分别是
、
.
(1)请在平面直角坐标系内画出示意图;
(2)求此图象所对应的函数关系式;
(3)若点
是此二次函数图象上位于
轴上方的一个动点,求
面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:把Rt△ABC和Rt△DEF按如图1摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如图2,△DEF从图1的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:
(1)用含t的代数式表示线段AP= ;
(2)当t为何值时,点E在∠A的平分线上?
(3)当t为何值时,点A在线段PQ的垂直平分线上?
(4)连接PE,当t=1(s)时,求四边形APEC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,
是
的角平分线,
,垂足为
,
,
和
的面积分别为49,40,则
的面积为( )
A.3.5B.4.5C.9D.10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,
均为等边三角形,点
,
,
在同一条直线上,连接
,
,
与
相交于点
,
与
相交于点
,连接
,下列结论正确的有_________.①
;②
;③
;④
;⑤
平分

相关试题