【题目】(2016云南省第22题)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式)
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
![]()
参考答案:
【答案】(1)、y=﹣2x+340(20≤x≤40);(2)、5200元.
【解析】
试题分析:(1)、待定系数法求解可得;(2)、根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.
试题解析:(1)、设y与x的函数关系式为y=kx+b,根据题意,得:
,
解得:
, ∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).
(2)、由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,
∵﹣2<0, ∴当x≤95时,W随x的增大而增大, ∵20≤x≤40,
∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的平面直角坐标系中表示下面各点:
A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)
(1)A点到原点O的距离是 。
(2)将点C向
轴的负方向平移6个单位,它与点 重合。(3)连接CE,则直线CE与
轴是什么关系?(4)点F分别到
、
轴的距离是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.

求:(1)∠AOC的度数;
(2)∠MON的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个直角三角形中,如果各边的长度都扩大5倍,那么它的两个锐角的余弦值________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016贵州省毕节市第27题)如图,已知抛物线
与直线
交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作
轴、
轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;
(2)若C 为AB中点,求PC的长;
(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连结OA,作如下探究:
探究一:平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),请在图1中作出BC,点C的坐标是_________;
探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D.则点D的坐标是_______.


(2) 已知四点O(0,0),A (a,b), C,B(c,d),顺次连结O,A,C,B.
若所得到的四边形是正方形,请直接写出a,b,c,d应满足的关系式是________.
相关试题