【题目】如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 . ![]()
参考答案:
【答案】4.8
【解析】解:连接OP,
![]()
∵矩形的两条边AB、BC的长分别为6和8,
∴S矩形ABCD=ABBC=48,OA=OC,OB=OD,AC=BD=
=10,
∴OA=OD=5,
∴S△ACD=
S矩形ABCD=24,
∴S△AOD=
S△ACD=12,
∵S△AOD=S△AOP+S△DOP=
OAPE+
ODPF=
×5×PE+
×5×PF=
(PE+PF)=12,
解得:PE+PF=4.8.
故答案为:4.8.
首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=
OAPE+
ODPF求得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.
(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为 ;
(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;
(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则
,
.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果x2+mx+25=(x+5)2,那么m的值为( )
A.5B.±5C.10D.±10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知y与x﹣2成正比例,当x=3时,y=2.
(1)求y与x之间的函数关系式;
(2)当﹣2<x<3时,求y的范围.
(3)证明:△ABC是直角三角形.
(4)请求图中阴影部分的面积.
相关试题