【题目】如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】A
【解析】解:∵在矩形ABCD中,AB=2,AD=3,
∴CD=AB=2,BC=AD=3,
∵点E是BC边上靠近点B的三等分点,
∴CE=
×3=2,
①点P在AD上时,△APE的面积y=
x2=x(0≤x≤3),
②点P在CD上时,S△APE=S梯形AECD﹣S△ADP﹣S△CEP,
=
(2+3)×2﹣
×3×(x﹣3)﹣
×2×(3+2﹣x),
=5﹣
x+
﹣5+x,
=﹣
x+
,
∴y=﹣
x+
(3<x≤5),
③点P在CE上时,S△APE=
×(3+2+2﹣x)×2=﹣x+7,
∴y=﹣x+7(5<x≤7),
故选:A.
【考点精析】根据题目的已知条件,利用函数的图象的相关知识可以得到问题的答案,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=
-
科目: 来源: 题型:
查看答案和解析>>【题目】ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.
(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为 ;
(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;
(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则
,
.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果x2+mx+25=(x+5)2,那么m的值为( )
A.5B.±5C.10D.±10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2 .

相关试题