【题目】如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.
![]()
(1)如图①中有 对全等三角形,并把它们写出来 ;
(2)求证:BD与EF互相平分于G;
(3)若将△ABF的边AF沿GA方向移动变为如图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.
参考答案:
【答案】(1)有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)见解析;(3)成立,理由见解析;
【解析】
(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD可判断全等三角形的个数.
(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.
(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.
(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.
理由:∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中,
,
∴Rt△ABF≌Rt△CED(HL),
∴ED=BF.
由∠AFB=∠CED=90°得DE∥BF,
∴∠EDG=∠GBF,
∵∠EGD和∠FGB是对顶角,ED=BF,
∴△DEG≌△BFG,
∴EG=FG,DG=BG,
∵∠AGB=∠CGD,
∴△AGB≌△CGD;
(2)∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中,
,
∴Rt△ABF≌Rt△CED(HL),
∴ED=BF.
由∠AFB=∠CED=90°得DE∥BF,
∴∠EDG=∠GBF,
∵∠EGD和∠FGB是对顶角,ED=BF,
△DEG≌△BFG,
∴EG=FG,DG=BG,
所以BD与EF互相平分于G;
(3)第(2)题中的结论成立,
理由:∵AE=CF,
∴AEEF=CFEF,即AF=CE,
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,
在Rt△ABF和Rt△CDE中,
,
∴Rt△ABF≌Rt△CED(HL),
∴BF=ED.
∵∠BFG=∠DEG=90°,
∴BF∥ED,
∴∠FBG=∠EDG,
∴△BFG≌△DEG,
∴FG=GE,BG=GD,
即第(2)题中的结论仍然成立.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学开展了为期一个月的“热爱劳动”教育,为了了解学生受教育后的效果,随机调查了部分家长,对学生周末家务劳动时间(单位:分钟)进行统计,按家务劳动时间分
A、B、C、D、E、F六个等级,绘制了如图8所示的不完整的统计图表:


请根据图表中提供的信息,解答下面的问题:
(1)这次一共调査了 位家长,家务劳动时间统计表中的b = ;
(2)请把家务劳动时间条形统计图补充完整;
(3)若绘制“家务劳动时间扇形统计图”,等级为“D”所对应扇形的圆心角是 度;
(4)若该中学有3000名学生,估计周末家务劳动时间在40分钟以上的学生有 人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点
在数轴上分别对应的数为
,则
两点间的距离表示为
.
根据以上知识解题:
(1)若数轴上两点
表示的数分别为
、-1,①
之间的距离可用含
的式子表示为 ;②若该两点之间的距离为2,那么
值为 .(2)
的最小值为 ,此时
可以取的整数值是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有__人,a+b=__,m=___;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.
(1)如图1,当点E在BC边上时.求证:①△ABM≌△CBM;②CG⊥CM.
(2)如图2,当点E在BC的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.
(3)试问当点E运动到什么位置时,△MCE是等腰三角形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(
),在四边形
中,
,
,
,
,
分别是
,
上的点,且
.探究图中线段
,
,
之间的数量关系.小王同学探究此问题的方法是,延长
到点
,使
,连接
,先证明
≌
,再证明
≌
,可得出结论,他的结论应该是__________.如图(
),若在四边形
中,
,
,
,
分别是
,
上的点,且
,上述结论是否仍然成立,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
经过A(0,-3),B(-1,0),且抛物线对称轴为直线
,E是抛物线的顶点。
(1)求抛物线的解析式以及顶点坐标E。
(2)在
轴上是否存在点P,使得
周长最短,若存在,请求出P点坐标,若不存在,请说明理由。
(3)直线
与抛物线交于C、D两点,Q是直线DC下方抛物线上的一点,是否存在点Q使得
的面积最大,若存在请求出最大面积,若不存在,请说明理由。(4)抛物线上是否存在点M,使得
是直角三角形,若存在,直接写出M点坐标,若不存在,请说明理由。

相关试题