【题目】如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
![]()
参考答案:
【答案】四边形AECF为菱形;证明见解析.
【解析】
如图,根据平行线的性质可得∠1=∠2,由O是AC中点可得AO=CO,利用AAS可证明△AOE≌△COF,可得AE=CF,根据中垂线的性质可得AF=CF,AE=CE,进而可证明AF=CF=AE=CE,即可得四边形AECF为菱形.
四边形AECF为菱形.证明如下:
∵AD∥BC,
∴∠1=∠2,
∵O是AC中点,
∴AO=CO,
在△AOE和△COF中
,
∴△AOE≌△COF(AAS),
∴AE=CF,
∵EF⊥AC,OA=OC,
∴AF=CF,AE=CE,
∴AF=CF=AE=CE
∴平行四边形AECF为菱形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有( )

A.5个B.4个C.3个D.2个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年9月9日兰州市秦王川国家湿地公园在万众瞩目中盛大开园,公园被分为六大板块,分别为:亲水运动公园、西北戴维营、私人农场区、湿地生态培育区、丝路古镇、湿地科普活动区(分别记为A,B,C,D,E,F),为了了解游客“最喜欢板块”的情况,随机对部分游客进行问卷调查,规定每个人从这六个板块中选择一个,并将调查结果绘制成如下两幅不完整的统计图.

根据以上信息回答下列问题:
(1)这次调查的样本容量是 ,a= ;
(2)扇形统计图中“C”对应的圆心角为 ;
(3)补全条形统计图;
(4)若2019年预计有100000人进园游玩,请估计最喜欢板块为“B”的游客人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2019年春节期间,兰州市开展了以“精致兰州志愿同行”为主题的系列志愿服务活动.金老师和程老师积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:
①“送温暖”活动岗位:为困难家庭打扫卫生,为留守儿童提供学业辅导;(分别用
,
表示)②“送平安”活动岗位:消防安全常识宣传,人员密集场所维护秩序.(分别用
,
表示)(1)金老师从四个岗位中随机选取一个报名,恰好选择“送温暖”活动岗位的概率是多少?
(2)若金老师和程老师各随机从四个活动岗位中选一个报名,请用树状图或列表法求出他们恰好都选择同一个岗位的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精确到0.1m.参考数据:
≈1.41,
≈1.73)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的长.

相关试题