【题目】已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是_____.
参考答案:
【答案】8
【解析】∵关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,
∴x1+x2=﹣2k,x1x2=k2+k+3,
∵△=4k2﹣4(k2+k+3)=﹣4k﹣12≥0,解得k≤﹣3,
∴(x1﹣1)2+(x2﹣1)2
=x12﹣2x1+1+x22﹣2x2+1
=(x1+x2)2﹣2x1x2﹣2(x1+x2)+2
=(﹣2k)2﹣2(k2+k+3)﹣2(﹣2k)+2
=2k2+2k﹣4
=2(k+
)2﹣![]()
当k=-3时,(x1﹣1)2+(x2﹣1)2的值最小,最小为8.
故(x1﹣1)2+(x2﹣1)2的最小值是8.
故答案为:8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.

(1)求AO与BO的长;
(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.如图(2),当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )

A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB的边OA半面镜.∠AOB=36°,在OB边上有点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好满足DC∥OB,已知入射光线、反射光线与半面镜的夹角相等,即∠ODE=∠ADC,求∠DEB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察图形,解答问题:

(1)按下表已填写的形式填写表中的空格:
图①
图②
图③
三个角上三个数的积
1×(﹣1)×2=﹣2
(﹣3)×(﹣4)×(﹣5)=﹣60
三个角上三个数的和
1+(﹣1)+2=2
(﹣3)+(﹣4)+(﹣5)=﹣12
积与和的商
﹣2÷2=﹣1,
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中如图所示,

(1)S△ABC= .
(2)x轴上是否存在点P,使得S△BCP=2S△ABC,若不存在,说明理由;若存在,求出P点的坐标.
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

相关试题